Solved Retrode
-
oui, j'y ai pensé aussi a transferer la rom sur le pi, mais ca fait refaire pas mal de boulot, sans compter cette histoire de sauvegarde ingame qu'a pas été des plus simple a mettre en place....reste plus qu'a espérer une maj frimware qui résoudrais cela (mais j'en doute, la derniere date de 2013) sinon, pour le bouton reset qui ramenerais au menu emulationstation, j'ai trouvé cette page https://github.com/digitalLumberjack/recalbox-os/wiki/Notice-(FR) ils disent qu'on peux brancher sur le gpio les boutons d'une manette....si je me branche directement dessus et que mon bouton reset fais start et select en meme temps, ca devrais marcher...
-
Salut Violene, je pense que tu devrais passer sur le canal irc tu trouveras peut etre plus d aide et d explication sur les gpio. ce n est pas trop mon domaine pour le moment. edit : je vais ouvrir une issue pour https://github.com/adafruit/Adafruit-Retrogame , ça permettra d'ajouter le binaire dans recalbox si besoin.
-
okay.....c'est cool... j'ai vu sur irc, le bigboss m'a dit qu'il avais intégré ca, et que t'etais en train de tester le truc.....
-
Salut trop fatiguée pour tester le truc mais j y jete un oeil et oui retropboy a compilé le binaire mais je me demande si il a ajouté le gpio pour le bouton echap lol.
-
pas de soucis, prends ton temps....y'a rien qui presse...^^
-
Salut j'ai pas de clavier peux tu testé si en faisant echap tu sors bien de retroarch ou lui faudrait-il une combinaison de touche aussi avec un clavier ? merci d'avance
-
je te confirme, la touche echap du clavier fais bien sortir de l'émulateur pour revenir au menu des émulateurs
-
Non j'ai compilé a l'arrache...
-
Si tu me modifie le fichier acris je te le compile comme tu le veux
-
@Violene merci pour le test. @retroboy merci beaucoup si j'ai bien compris il faut déclarer la touche dans retrogame.c puis lancer le make. J'ai ajouté ceci : GPIO 11
{ 11, KEY_ESC }, // escape, out of emulator /* ADAFRUIT RETROGAME UTILITY: remaps buttons on Raspberry Pi GPIO header to virtual USB keyboard presses. Great for classic game emulators! Retrogame is interrupt-driven and efficient (usually under 0.3% CPU use) and debounces inputs for glitch-free gaming. Connect one side of button(s) to GND pin (there are several on the GPIO header, but see later notes) and the other side to GPIO pin of interest. Internal pullups are used; no resistors required. Avoid pins 8 and 10; these are configured as a serial port by default on most systems (this can be disabled but takes some doing). Pin configuration is currently set in global table; no config file yet. See later comments. Must be run as root, i.e. 'sudo ./retrogame &' or configure init scripts to launch automatically at system startup. Requires uinput kernel module. This is typically present on popular Raspberry Pi Linux distributions but not enabled on some older varieties. To enable, either type: sudo modprobe uinput Or, to make this persistent between reboots, add a line to /etc/modules: uinput Prior versions of this code, when being compiled for use with the Cupcade or PiGRRL projects, required CUPCADE to be #defined. This is no longer the case; instead a test is performed to see if a PiTFT is connected, and one of two I/O tables is automatically selected. Written by Phil Burgess for Adafruit Industries, distributed under BSD License. Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Copyright (c) 2013 Adafruit Industries. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <fcntl.h> #include <poll.h> #include <signal.h> #include <sys/mman.h> #include <linux/input.h> #include <linux/uinput.h> // START HERE ------------------------------------------------------------ // This table remaps GPIO inputs to keyboard values. In this initial // implementation there's a 1:1 relationship (can't attach multiple keys // to a button) and the list is fixed in code; there is no configuration // file. Buttons physically connect between GPIO pins and ground. There // are only a few GND pins on the GPIO header, so a breakout board is // often needed. If you require just a couple extra ground connections // and have unused GPIO pins, set the corresponding key value to GND to // create a spare ground point. #define GND -1 struct { int pin; int key; } *io, // In main() this pointer is set to one of the two tables below. ioTFT[] = { // This pin/key table is used if an Adafruit PiTFT display // is detected (e.g. Cupcade or PiGRRL). // Input Output (from /usr/include/linux/input.h) { 2, KEY_LEFT }, // Joystick (4 pins) { 3, KEY_RIGHT }, { 4, KEY_DOWN }, { 17, KEY_UP }, { 27, KEY_Z }, // A/Fire/jump/primary { 22, KEY_X }, // B/Bomb/secondary { 23, KEY_R }, // Credit { 18, KEY_Q }, // Start 1P { 11, KEY_ESC }, // escape, out of emulator { -1, -1 } }, // END OF LIST, DO NOT CHANGE // MAME must be configured with 'z' & 'x' as buttons 1 & 2 - // this was required for the accompanying 'menu' utility to // work (catching crtl/alt w/ncurses gets totally NASTY). // Credit/start are likewise moved to 'r' & 'q,' reason being // to play nicer with certain emulators not liking numbers. // GPIO options are 'maxed out' with PiTFT + above table. // If additional buttons are desired, will need to disable // serial console and/or use P5 header. Or use keyboard. ioStandard[] = { // This pin/key table is used when the PiTFT isn't found // (using HDMI or composite instead), as with our original // retro gaming guide. // Input Output (from /usr/include/linux/input.h) { 25, KEY_LEFT }, // Joystick (4 pins) { 9, KEY_RIGHT }, { 10, KEY_UP }, { 17, KEY_DOWN }, { 23, KEY_LEFTCTRL }, // A/Fire/jump/primary { 7, KEY_LEFTALT }, // B/Bomb/secondary // For credit/start/etc., use USB keyboard or add more buttons. { -1, -1 } }; // END OF LIST, DO NOT CHANGE // A "Vulcan nerve pinch" (holding down a specific button combination // for a few seconds) issues an 'esc' keypress to MAME (which brings up // an exit menu or quits the current game). The button combo is // configured with a bitmask corresponding to elements in the above io[] // array. The default value here uses elements 6 and 7 (credit and start // in the Cupcade pinout). If you change this, make certain it's a combo // that's not likely to occur during actual gameplay (i.e. avoid using // joystick directions or hold-for-rapid-fire buttons). // Also key auto-repeat times are set here. This is for navigating the // game menu using the 'gamera' utility; MAME disregards key repeat // events (as it should). const unsigned long vulcanMask = (1L << 6) | (1L << 7); const int vulcanKey = KEY_ESC, // Keycode to send vulcanTime = 1500, // Pinch time in milliseconds repTime1 = 500, // Key hold time to begin repeat repTime2 = 100; // Time between key repetitions // A few globals --------------------------------------------------------- char *progName, // Program name (for error reporting) sysfs_root[] = "/sys/class/gpio", // Location of Sysfs GPIO files running = 1; // Signal handler will set to 0 (exit) volatile unsigned int *gpio; // GPIO register table const int debounceTime = 20; // 20 ms for button debouncing // Some utility functions ------------------------------------------------ // Set one GPIO pin attribute through the Sysfs interface. int pinConfig(int pin, char *attr, char *value) { char filename[50]; int fd, w, len = strlen(value); sprintf(filename, "%s/gpio%d/%s", sysfs_root, pin, attr); if((fd = open(filename, O_WRONLY)) < 0) return -1; w = write(fd, value, len); close(fd); return (w != len); // 0 = success } // Un-export any Sysfs pins used; don't leave filesystem cruft. Also // restores any GND pins to inputs. Write errors are ignored as pins // may be in a partially-initialized state. void cleanup() { char buf[50]; int fd, i; sprintf(buf, "%s/unexport", sysfs_root); if((fd = open(buf, O_WRONLY)) >= 0) { for(i=0; io[i].pin >= 0; i++) { // Restore GND items to inputs if(io[i].key == GND) pinConfig(io[i].pin, "direction", "in"); // And un-export all items regardless sprintf(buf, "%d", io[i].pin); write(fd, buf, strlen(buf)); } close(fd); } } // Quick-n-dirty error reporter; print message, clean up and exit. void err(char *msg) { printf("%s: %s. Try 'sudo %s'.\n", progName, msg, progName); cleanup(); exit(1); } // Interrupt handler -- set global flag to abort main loop. void signalHandler(int n) { running = 0; } // Detect Pi board type. Doesn't return super-granular details, // just the most basic distinction needed for GPIO compatibility: // 0: Pi 1 Model B revision 1 // 1: Pi 1 Model B revision 2, Model A, Model B+, Model A+ // 2: Pi 2 Model B static int boardType(void) { FILE *fp; char buf[1024], *ptr; int n, board = 1; // Assume Pi1 Rev2 by default // Relies on info in /proc/cmdline. If this becomes unreliable // in the future, alt code below uses /proc/cpuinfo if any better. #if 1 if((fp = fopen("/proc/cmdline", "r"))) { while(fgets(buf, sizeof(buf), fp)) { if((ptr = strstr(buf, "mem_size=")) && (sscanf(&ptr[9], "%x", &n) == 1) && (n == 0x3F000000)) { board = 2; // Appears to be a Pi 2 break; } else if((ptr = strstr(buf, "boardrev=")) && (sscanf(&ptr[9], "%x", &n) == 1) && ((n == 0x02) || (n == 0x03))) { board = 0; // Appears to be an early Pi break; } } fclose(fp); } #else char s[8]; if((fp = fopen("/proc/cpuinfo", "r"))) { while(fgets(buf, sizeof(buf), fp)) { if((ptr = strstr(buf, "Hardware")) && (sscanf(&ptr[8], " : %7s", s) == 1) && (!strcmp(s, "BCM2709"))) { board = 2; // Appears to be a Pi 2 break; } else if((ptr = strstr(buf, "Revision")) && (sscanf(&ptr[8], " : %x", &n) == 1) && ((n == 0x02) || (n == 0x03))) { board = 0; // Appears to be an early Pi break; } } fclose(fp); } #endif return board; } // Main stuff ------------------------------------------------------------ #define PI1_BCM2708_PERI_BASE 0x20000000 #define PI1_GPIO_BASE (PI1_BCM2708_PERI_BASE + 0x200000) #define PI2_BCM2708_PERI_BASE 0x3F000000 #define PI2_GPIO_BASE (PI2_BCM2708_PERI_BASE + 0x200000) #define BLOCK_SIZE (4*1024) #define GPPUD (0x94 / 4) #define GPPUDCLK0 (0x98 / 4) int main(int argc, char *argv[]) { // A few arrays here are declared with 32 elements, even though // values aren't needed for io[] members where the 'key' value is // GND. This simplifies the code a bit -- no need for mallocs and // tests to create these arrays -- but may waste a handful of // bytes for any declared GNDs. char buf[50], // For sundry filenames c, // Pin input value ('0'/'1') board; // 0=Pi1Rev1, 1=Pi1Rev2, 2=Pi2 int fd, // For mmap, sysfs, uinput i, j, // Asst. counter bitmask, // Pullup enable bitmask timeout = -1, // poll() timeout intstate[32], // Last-read state extstate[32], // Debounced state lastKey = -1; // Last key down (for repeat) unsigned long bitMask, bit; // For Vulcan pinch detect volatile unsigned char shortWait; // Delay counter struct input_event keyEv, synEv; // uinput events struct pollfd p[32]; // GPIO file descriptors progName = argv[0]; // For error reporting signal(SIGINT , signalHandler); // Trap basic signals (exit cleanly) signal(SIGKILL, signalHandler); // Select io[] table for Cupcade (TFT) or 'normal' project. io = (access("/etc/modprobe.d/adafruit.conf", F_OK) || access("/dev/fb1", F_OK)) ? ioStandard : ioTFT; // If this is a "Revision 1" Pi board (no mounting holes), // remap certain pin numbers in the io[] array for compatibility. // This way the code doesn't need modification for old boards. board = boardType(); if(board == 0) { for(i=0; io[i].pin >= 0; i++) { if( io[i].pin == 2) io[i].pin = 0; else if(io[i].pin == 3) io[i].pin = 1; else if(io[i].pin == 27) io[i].pin = 21; } } // ---------------------------------------------------------------- // Although Sysfs provides solid GPIO interrupt handling, there's // no interface to the internal pull-up resistors (this is by // design, being a hardware-dependent feature). It's necessary to // grapple with the GPIO configuration registers directly to enable // the pull-ups. Based on GPIO example code by Dom and Gert van // Loo on elinux.org if((fd = open("/dev/mem", O_RDWR | O_SYNC)) < 0) err("Can't open /dev/mem"); gpio = mmap( // Memory-mapped I/O NULL, // Any adddress will do BLOCK_SIZE, // Mapped block length PROT_READ|PROT_WRITE, // Enable read+write MAP_SHARED, // Shared with other processes fd, // File to map (board == 2) ? PI2_GPIO_BASE : // -> GPIO registers PI1_GPIO_BASE); close(fd); // Not needed after mmap() if(gpio == MAP_FAILED) err("Can't mmap()"); // Make combined bitmap of pullup-enabled pins: for(bitmask=i=0; io[i].pin >= 0; i++) if(io[i].key != GND) bitmask |= (1 << io[i].pin); gpio[GPPUD] = 2; // Enable pullup for(shortWait=150;--shortWait;); // Min 150 cycle wait gpio[GPPUDCLK0] = bitmask; // Set pullup mask for(shortWait=150;--shortWait;); // Wait again gpio[GPPUD] = 0; // Reset pullup registers gpio[GPPUDCLK0] = 0; (void)munmap((void *)gpio, BLOCK_SIZE); // Done with GPIO mmap() // ---------------------------------------------------------------- // All other GPIO config is handled through the sysfs interface. sprintf(buf, "%s/export", sysfs_root); if((fd = open(buf, O_WRONLY)) < 0) // Open Sysfs export file err("Can't open GPIO export file"); for(i=j=0; io[i].pin >= 0; i++) { // For each pin of interest... sprintf(buf, "%d", io[i].pin); write(fd, buf, strlen(buf)); // Export pin pinConfig(io[i].pin, "active_low", "0"); // Don't invert if(io[i].key == GND) { // Set pin to output, value 0 (ground) if(pinConfig(io[i].pin, "direction", "out") || pinConfig(io[i].pin, "value" , "0")) err("Pin config failed (GND)"); } else { // Set pin to input, detect rise+fall events if(pinConfig(io[i].pin, "direction", "in") || pinConfig(io[i].pin, "edge" , "both")) err("Pin config failed"); // Get initial pin value sprintf(buf, "%s/gpio%d/value", sysfs_root, io[i].pin); // The p[] file descriptor array isn't necessarily // aligned with the io[] array. GND keys in the // latter are skipped, but p[] requires contiguous // entries for poll(). So the pins to monitor are // at the head of p[], and there may be unused // elements at the end for each GND. Same applies // to the intstate[] and extstate[] arrays. if((p[j].fd = open(buf, O_RDONLY)) < 0) err("Can't access pin value"); intstate[j] = 0; if((read(p[j].fd, &c, 1) == 1) && (c == '0')) intstate[j] = 1; extstate[j] = intstate[j]; p[j].events = POLLPRI; // Set up poll() events p[j].revents = 0; j++; } } // 'j' is now count of non-GND items in io[] table close(fd); // Done exporting // ---------------------------------------------------------------- // Set up uinput #if 1 // Retrogame normally uses /dev/uinput for generating key events. // Cupcade requires this and it's the default. SDL2 (used by // some newer emulators) doesn't like it, wants /dev/input/event0 // instead. Enable that code by changing to "#if 0" above. if((fd = open("/dev/uinput", O_WRONLY | O_NONBLOCK)) < 0) err("Can't open /dev/uinput"); if(ioctl(fd, UI_SET_EVBIT, EV_KEY) < 0) err("Can't SET_EVBIT"); for(i=0; io[i].pin >= 0; i++) { if(io[i].key != GND) { if(ioctl(fd, UI_SET_KEYBIT, io[i].key) < 0) err("Can't SET_KEYBIT"); } } if(ioctl(fd, UI_SET_KEYBIT, vulcanKey) < 0) err("Can't SET_KEYBIT"); struct uinput_user_dev uidev; memset(&uidev, 0, sizeof(uidev)); snprintf(uidev.name, UINPUT_MAX_NAME_SIZE, "retrogame"); uidev.id.bustype = BUS_USB; uidev.id.vendor = 0x1; uidev.id.product = 0x1; uidev.id.version = 1; if(write(fd, &uidev, sizeof(uidev)) < 0) err("write failed"); if(ioctl(fd, UI_DEV_CREATE) < 0) err("DEV_CREATE failed"); #else // SDL2 prefers this event methodology if((fd = open("/dev/input/event0", O_WRONLY | O_NONBLOCK)) < 0) err("Can't open /dev/input/event0"); #endif // Initialize input event structures memset(&keyEv, 0, sizeof(keyEv)); keyEv.type = EV_KEY; memset(&synEv, 0, sizeof(synEv)); synEv.type = EV_SYN; synEv.code = SYN_REPORT; synEv.value = 0; // 'fd' is now open file descriptor for issuing uinput events // ---------------------------------------------------------------- // Monitor GPIO file descriptors for button events. The poll() // function watches for GPIO IRQs in this case; it is NOT // continually polling the pins! Processor load is near zero. while(running) { // Signal handler can set this to 0 to exit // Wait for IRQ on pin (or timeout for button debounce) if(poll(p, j, timeout) > 0) { // If IRQ... for(i=0; i<j; i++) { // Scan non-GND pins... if(p[i].revents) { // Event received? // Read current pin state, store // in internal state flag, but // don't issue to uinput yet -- // must wait for debounce! lseek(p[i].fd, 0, SEEK_SET); read(p[i].fd, &c, 1); if(c == '0') intstate[i] = 1; else if(c == '1') intstate[i] = 0; p[i].revents = 0; // Clear flag } } timeout = debounceTime; // Set timeout for debounce c = 0; // Don't issue SYN event // Else timeout occurred } else if(timeout == debounceTime) { // Button debounce timeout // 'j' (number of non-GNDs) is re-counted as // it's easier than maintaining an additional // remapping table or a duplicate key[] list. bitMask = 0L; // Mask of buttons currently pressed bit = 1L; for(c=i=j=0; io[i].pin >= 0; i++, bit<<=1) { if(io[i].key != GND) { // Compare internal state against // previously-issued value. Send // keystrokes only for changed states. if(intstate[j] != extstate[j]) { extstate[j] = intstate[j]; keyEv.code = io[i].key; keyEv.value = intstate[j]; write(fd, &keyEv, sizeof(keyEv)); c = 1; // Follow w/SYN event if(intstate[j]) { // Press? // Note pressed key // and set initial // repeat interval. lastKey = i; timeout = repTime1; } else { // Release? // Stop repeat and // return to normal // IRQ monitoring // (no timeout). lastKey = timeout = -1; } } j++; if(intstate[i]) bitMask |= bit; } } // If the "Vulcan nerve pinch" buttons are pressed, // set long timeout -- if this time elapses without // a button state change, esc keypress will be sent. if((bitMask & vulcanMask) == vulcanMask) timeout = vulcanTime; } else if(timeout == vulcanTime) { // Vulcan timeout occurred // Send keycode (MAME exits or displays exit menu) keyEv.code = vulcanKey; for(i=1; i>= 0; i--) { // Press, release keyEv.value = i; write(fd, &keyEv, sizeof(keyEv)); usleep(10000); // Be slow, else MAME flakes write(fd, &synEv, sizeof(synEv)); usleep(10000); } timeout = -1; // Return to normal processing c = 0; // No add'l SYN required } else if(lastKey >= 0) { // Else key repeat timeout if(timeout == repTime1) timeout = repTime2; else if(timeout > 30) timeout -= 5; // Accelerate c = 1; // Follow w/SYN event keyEv.code = io[lastKey].key; keyEv.value = 2; // Key repeat event write(fd, &keyEv, sizeof(keyEv)); } if(c) write(fd, &synEv, sizeof(synEv)); } // ---------------------------------------------------------------- // Clean up ioctl(fd, UI_DEV_DESTROY); // Destroy and close(fd); // close uinput cleanup(); // Un-export pins puts("Done."); return 0; }
-
je penche sur une réalisation du même genre (le reset sur gpio avec un retour sous emulationstation) mon niveau de programmation étant proche de 0 je suis attentif a votre poste si vous arrivez a quelque choses ça m’intéresse je suis tomber sur un principe quelque peu différent peut être que vous y comprendrait plus que moi au lieu de passé par ADAFRUIT c'est un script python qui simule l’appuie sur echap http://carrefour-numerique.cite-sciences.fr/fablab/wiki/doku.php?id=projets:retropie_gpio_additions
-
Bonjour l'idée est intéressante du moment ou tu veux ajouter des boutons. dès que j'ai un moment je testerai. Cependant adafruit va plus loin car il permet de simuler les touches clavier sur les gpio, donc si certains jeux requièrent le clavier il serait donc possible d utiliser un kit joystick placé sur le gpio pour jouer en théorie
-
d'ailleurs, mon projet prends doucement forme.... j'attends encore du matériel pour fixer tout ca proprement...parce que simplement collé, ca me convient pas du tout...
-
Oui je suis bien d'accord Acris Adfruit et plus complet, mais moi qui dans mon cas ne cherche qu'a faire un "retour bureau" c'est peut etre un peu complexe a metre en oeuvre ? Si tu teste je suis preneur de tes conclusion
-
Bonjour a ceux et celles qui suivent ce topic... je viens aux nouvelles, histoire de savoir ou en est l'intégration d'adafruit, tu as pu tester tout ca acris ?
-
Nop car il me faut un bouton pour tester je dois en récupérer un au travail et avec cette canicule pas trop sur le pc.
-
j'te comprends, la chaleur n'incite pas a bosser.....chez moi aussi c'est l'enfer....
-
mon petit bricolage avance doucement...au fil du matos que la poste me livre... J'ai pu intégrée dans la snes le pi, le retrode, le port manettes d'origine que j'ai bricolé et j'ai meme remis le levier d'ejection des cartouches. il faudra que je le renforce a long terme parce que je l'ai bien aminci pour qu'il prenne sa place. il me reste a recevoir le LM2596 que j'ai commandé sur amazon afin de pouvoir me servir de l'alim d'origine de la snes... j'aimerais pouvoir utiliser la trappe sous la snes pour déporter le dernier port usb (qui me servirais eventuellement a synchroniser mes manettes ps3 les jours ou j'ai pas envie de trimballer celles de snes. il faut aussi que je branche le bouton power d'origine (sur le LS2596) et le bouton reset sur le GPIO. J'aimerais aussi trouver un moyen de faire briller la led d'origine de la console...je me demande si je fais une simple led power ou si je déporte la led d'activité du pi.... et enfin, trouver un adaptateur usb/snes pour la 2eme manette...puisqu'il semble impossible de déclarer les 2 manettes du retrode ca fait beaucoup de choses, et peu de place...
-
Pas mal du tout ce pztit projet. J'aime beaucoup!!
-
Salut je ne suis pas familière avec ce type de bricolage si j ai bien compris le LM2596 est un convertisseur et régulateur qui va te permettre de modifier le voltage et l'ampérage de l'alimentation de la snes pour obtenir du 5V 2A ? Je pense que tu dois brancher des fils sur les GPIO genre +5V ET GND parce que je vois pas comment cette "chose" sera relié Je regarde dès que possible faut juste que je retrouve mon cable bouton (en ce moment je monte des meubles lol)